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Abstract-Exact solutions in closed-form are presented for the dynamic response of an infinite elastic
membrane to a suddenly applied, radially expanding ring load,

INTRODUCTION

In a 1967 paper[l], Kanninen and Florence studied the dynamic response of an infinite elastic
membrane to a suddenly applied, radially expanding ring load. To solve the initial boundary value
problem they applied the Hankel transform to the radial variable and derived integral
representations for the membrane response. However, as the integrals could not be evaluated
analytically, they had to resort to numerical integration in order to obtain results on the
membrane displacement and velocity. The purpose of this paper is to present exact solutions, in
closed-form, for the membrane problem mentioned above.

The membrane problem is solved here by an integral transform method different from that in
[1]. We apply the Laplace transform with respect to time t and solve the resulting boundary value
problem in the space variable r using the method of Green's function. By the convolution
theorem the membrane displacement is expressed in terms of double integrals where the
integrands involve the complete elliptic integral of the first kind. The limits of the double integrals
depend on whether the load speed v is supersonic or subsonic, Le. greater or less than the
membrane wave speed c, and on r relative to vt and ct. The regions of integration are identified in
the various cases. After suitable manipUlations and making use of properties of the complete
elliptic integral, the limits of integration are changed so that the repeated integrations may be
carried out explicitly, with only radicals of quadratic functions being encountered in the
integrand at each step.

The solutions for the membrane response will be derived and presented in the next section.
Details of the double integrations for the most cases, however, are omitted for brevity. As
dynamic loads of the type considered here arise, for example, when sheet explosives are
detonated over the surface of a structure, the solutions here may serve to illustrate the response
of more general structures to such impulsive loads.

Discussions of the results are given at the end of this paper.

FORMULATION OF THE PROBLEM AND SOLUTIONS

The governing equation for a linear elastic membrane in axisymmetric motion is well known:

(1)

where w = w(r, t) is the transverse displacement, p is the areal density of the membrane, and Tis
the membrane tension. The right hand side of (I) represents the ring load on the membrane, with P
being the load intensity along the load front r = vt. We also have the following initial and boundary
conditions:

iiw
w(r, 0) = at (r, 0) = 0
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awar (0, t) = w(oo, t) =O.

We take the Laplace transform of (1) and make use of (2) to obtain

d2A IdA 2
~+-~-l!-w::: -N e-pr

/
v

dr2 r dr c 2

(3)

(4)

where w = w(r, p) denotes the Laplace transform of w(r, t), p being the transform parameter,
c = (T/p)I/2 is the membrane wave speed, and N = P/pc2v. The boundary conditions for w(r)
follow from (3) and are

where and henceforth the dependence of the Laplace transform on p is suppressed.
We express the solutions for w(r) as

w(r) ::: Nf G(r, r') e-pr'/_ dr'

(5)

(6)

where G(r, r') is the "Green's function" [2J for the boundary value problem for wand is given by

G I {r'Ko(Prl/c)!Jpr/c) r< r'
(r,r)= r'!o(pr'/c)Ko(pr/v) r>r' (7)

where 10 and Ko denote, respectively, the modified Bessel functions, of order zero, of the first and
second kind. Substituting (7) into (6) leads to

(8)

with

Taking the Laplace inverse of (8) then yields

w(r, t) = w.(r, t) +w2(r, t)

where

(9)

(10)

(11)

(12)

with It-I being the inverse Laplace transform operator.
We observe that wl(r) given in (9) and (10) involve products of functions of p. Hence wl(r, t)

may be expressed as convolution integrals of the inverses of such functions. Using the known
relations [3]

.!r'!e-~lo(ap)] ~ { ~V(I~ - III

'p-1[eapKo(ap)J = y'(t2: 2at)

t <2a

t>2a
(13)

(14)
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and with the aid of the translation theorem for Laplace transforms [4], we obtain

NJ1 r' dr' dt'
wJ(r, t) =-; R,y[(t - t')(2rle + t - t')]y([t' - (r - r')lc - r'lv][(r +r')/c + r'lv - t'})
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(15)

NJ1 r' dr' dt'
w2(r, t):= -; R> y[(t - t')(2rle - t + t')]y([t' - (r' - r)le - r'lv][t' +(r' +r)le - r'lv]) (16)

where the regions of integration R1 and R2 are defined by

RJ : 0< t'< t, 0< r' < r, (r-r')lc +r'lv < t'«r+r')le +r'lv

R2 : 0< t' < t, r'> r, t - t'<2rlc, t'> (r'- r)lc +r'lv.

(17)

(18)

These regions obviously depend on v relative to c and on r relative to vt and ct. We have the
following distinct cases:

(1) v < e: RI is nonexistent for r> ct. For r satisfying vt < r < et, t(2le + l/vr l < r < vt and
r < t(2le +1/v)-1 respectively, R1 is as shown in Figs. l(a)-(c).

(2) v > c: R 1 is nonexistent for r> vt. For r satisfying et < r < vt, t(2le + Ilvr l < r < et and
r < t(2le + l/vr l respectively, R1 is as shown in Figs. 2(a)-(c).

(3) R2 is nonexistent for r> vt, and is as shown in Figs. 3(a), (b) respectively for
t(2le + l/vr l < r < vt and r < t(2le + l/vr l regardless of the values of v and e.

In order to find w.(r, t) and w2(r, t) from (15) and (16), we first observe that for v < c and
r> et, both R1 and R2 are nonexistent. The same is true for v> c and r> vt. So in these cases
w(r,/)50.

t'

riC

o '--- -..J..__ r'

(0 )

t'

"

o '---- --1..__ r'

ric

o '-------'---- r'
r

(e)

Fig. I. Regionsof integrations for R,: V < c.(a) vt < r < ct,(b)t(2/c + I/V)-l < r < vt,(c)r < t(2/c + I/vf'.Line
I: t'=r/c+(lIc+l/v)r'; Line 2: t'=r/c+(l/v-I/c)r'.
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t'

r/~ p-c-----+--

o '---- --L__ r'

(0 )

t'

ric

o '----- --L__ r'

ric

o '----- ....L-__ r'

(c)

Fig. 2. Regions integration for R,: v>e. (a) et<r<et, (b) t(2Ie+llvf'<r<et, (e) r<t(2Ie+!/v)-'.
Line I: t' =ric +(lIe + !/v)r'; Line 2: t' =ric - (lIe -llv)r'.

2

o ~-'"""7'c-------L------- r'

ric
(0 )

o ~--7''------':--------- r'

ric

Fig. 3. Regions of integrations for R,: (a) t(2Ic+llvf'<r<vt, (b) r<t(2Ie+l/vr'. Line 1:
t' = -ric +(lIe + !/v)r'; Line 2: t' = t - 2rle.
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Next consider the case v < c and vt < r < ct. Here R, is given in Fig. l(a) while R2 is
nonexistent. Thus w2(r. t) =0 and from (15) we have

where

_ _ Nft A(r, r', t) dt'
w(r, t) - wl(r, t) -;: .Ie V[(t - t')(2rlc + t-t')]

f ("-.lelIOle-tlc) r' dr'
A(r, t, t') = "", ,.

(t'-./e)l(lfv+!/e) V([t - (r - r )Ie - r Iv][(r + r )Ie + r Iv - t ])

(19)

(20)

The expression under the radical sign above is a quadratic in r'. The integration in (20) is
elementary and we find

Substitution of (21) into (19) yields

Nv 2 ft (t' - rIc) dt'
w(r, t) = [1- (vle)2fl2 .Ie V[(t - t')(2rle + t - n]'

(21)

(22)

We note that the expression under the radical sign above is a quadratic in t'. Carrying out the
t'-integration we finally obtain in this case

(23)

We now consider the case v > e and et < r < vt, for which R 1 is given in Fig. 2(a) and R2 in
Fig. 3(a). We express wt(r, t) and w2(r, t) in (15) and (16) as

where

with

NiTw,(r, t) = - r'B1(r, r', t) dr'
17' (rle-I)/(I/e-I/v)

Nf(·le+!)/('IC-I/V)

w2(r,t)=- r'B2(r,r',t)dr'
17' •

('" dt'
B,(r, r', t) = Js, v[(al - t')({31 - t')( 'Yt - t')(t' - 5,)]

L
a> dt'

B2(r, r', t) = /3> v[(a2 - t')(t' - {32)(t' - 'Y2)(t' -lh)]

(24)

(25)

(26)

(27)

a. =2rle + t, {3, = (r + r')le + r'lv, 'Y' = t,

5, = (r - r')/e + r'lv (28)

a2 = t, f32 = -(r - r')le + r'lv, 'Y2 = t - 2rlc,

52 = -(r + r')le + r'lv.

We also introduce the integral B 3(r, r', t) defined by

L'" dt'
B3(r, r', t) = s, v[(a3 - t')(f33 - t')(oy3 - t')(t' - 53)]
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(29)

(30)
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a3=t+(r+r')lc-r'lv, f33 = 2rlc, 'I3=t-(r-r')lc-r'lv, lS3=0. (1)

We observe that a; > f3; > 'Ii > lSi for i = 1,2,3 over the respective regions of integration.
The integrals Bi(r, r', t), i = 1,2,3, are all identical since

B(r r' t) = 2 K (ai - f3i)( 'Ii -lSi»)
I " v[(ai - 1i)(f3i -lSi)] (ai - 'Ii)(f3i -lSd

= _c_ K (c
2
[t +(r - r')lc - r'lv][t - (r - r')lc - r'lv]) (32)

v(rr') 4rr' i = 1,2,3

where K denotes the complete elliptic integral of the first kind [5].
We now combine (24) and (25) to form a single r'-integral for w(r, t) and then express it as the

difference of two integrals

Nl(rlc+1l/0/C + Ilv)

w(r, t) = - r'B)(r, r', t) dr'
1fT (ric -l)/O/c -l/v)

with

N L<r1c -t-1l/0/c+ 1/v)

Zt(r, t) = - r'B)(r, r', t) dr'
71' 0

NL(r1c-tXIIC-IIV)

z2(r, t) = - r'B3(r, r', t) dr'.
71' 0

(33)

(34)

(35)

The double integration for zl(r, t) is over a triangular region in the (r', t') plane with vertices at
(0,0), ([rIc + t]/[l/c + I/v],O) and (O,rlc+t). Upon interchanging the order of integration we
have

where

N ric+! A.(r, t, t') dt'
z.(r, t) = -; Jo v[t'(2rlc - t')] (36)

rrlc+!-r'I/O/c+1IVl r'dr'

A .(r, t, t') = Jo v([rle + t - t' + r'(llc -lIv )][rle + t - t' - r'(lle + Ilv)])" (37)

The double integration for z2(r, t) as given in (35) is over a trapezoid in the (r', t') plane. We
note that for 0 < r' < [(rIc - t)/(llc -llv)]' the values a3, f33' '13, 83 as defined in (31) satisfy
(3) > a3 > '13 > 83 • We replace B3(r, r', t) in (35) by the identical elliptic integral B4(r, r', t) defined
by

(38)

with a4:: f33, f34 = U3, 14 = '13, 84 = 83. It is seen that B4(r, r', t) reduces to (32) for i = 4. The
double integration for z2(r, t) is now over a triangular region with vertices at (0, rl c + t), (0, 2rlc)
and ([rIc - t]/[lle - l/v], 2rle). Upon interchanging the order of integration we have

N f2 r
lc A 2(r, t, t') dt'

z2(r, t) = -; J/C+! V[(2rlc - t')t'] (9)
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l
(1'-·-r'C)/(I/c-I/O) r'dr'

A2(r, t, t') = 0 V([t' - t - ric - r'(l/c -llv )][t' - t - rIc + r'(l/c + l/v)])" (40)

All the integrations above can now be performed explicitly, with the integrands involving only
radicals of quadratics of the variable of integration. From (37) and (40) we obtain

A1(r, t, t') = ct(rlc + t - t')

where CI and C2 are constants given by

2

CI = [(vlc)~ -1]3/2 {[(vlcf _1)1/2 - 1T/2 +sin-I (clv))

2

C2 = [(vlc)~ _ 1]3/2 {[(VIC)2 -lt
2+1T/2 +sin-I (clv)}.

(41)

(42)

(43)

(44)

Substituting (41) into (36) and (42) into (39) and performing the t'-integrations we then have

ZI(r, t) =!ic1t{[(rlct)2 - 1r/2 +sin-I (ctlr) +1T/2}
1T

From (33) we finally obtain

(45)

(46)

w(r, t) = [(VI:fv~1]3/2 {[(VIC)2 - 1]1/2 +sin-I (clv) - [(rlct)2 _1]1/2 - sin-I (ctlr)}. (47)

Details for the remaining cases are similar to those given here and are omitted. We now
summarize the solutions for w(r, t) normalized with respect to vot, where Vo = Plpv. Also, in what
follows fJ = vIc, a = rlct.
I. v<c (fJ<1)

Or> ct (a> 1)

(l-P;2)3/2 [cos h-I(l/a) - (l- a 2)1/2]

II. v>c (fJ>1)

w(r, t)-;;;t = vt < r < ct (fJ < a < l)

(l_P;2)3/2 [cos h-1(l1fJ) - (l- fJ2)1/2]

r < vt (a < (3).

Or> vt (a > fJ)

(fJ2~21)3i2 [(fJ2 _1)1/2 +sin-I (l/fJ)

w(r, t) -(a2_1)1/2 _ sin-I (l/a)]-;;;t=

(48)

(49)
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ct < r < vt (I < a < (;)

It [(f.l 2 1)1/2 . -I (II({;2 _1)3/2 I-' - +sm (;)

r < ct (a < I).

?T/2]

Also, when v~ c, the solutions in (48) and (49) both tend to the following limit

III. v = c ({; = l)

w(r, t)J0 r> ct (a > 1)

vot lj r < ct (a < 1).
(50)

We also present the solutions for the membrane velocity normalized with respect to Vo, which
are obtained from differentiating w(r, t) with respect to time.
I. v < c ({; < I)

Or> ct (a> 1)

(l_~2Y3l2COS h-I(lla)

II. v > c ({; > 1)

I aw
--(r,t)=
vo at v < r < ct ({; < a < l)

(l !;2)3IZ [cos h-1(l1{;) - (1- {;2)1/2]

r<vt (a <(;).

(51)

I aw
--(r, t) =
Vo at

III. v =c ({; =1)

Or> vt (a> (;)

({;Z~21)3/2 [({;Z_1)I/2+ sin-I (ll{;)- sin-I (lla)]

ct < r < vt (I < a < (;)

({;2 ~ZI)3/2 [({;2 -1)1/2 +sin-I (l1{;) -?T/2]

r < ct (a < I).

1aw {O r>ct (a>1)
--(r,t)= 1
Vo at 3 r < ct (a < I).

(52)

(53)

DISCUSSIONS

We can now make some observations on the membrane response. The ring load on the
membrane starts at the origin at t = 0 and moves outwardly at the speed v. Since disturbances in
the membrane propagate with the speed c, we have, at any t > 0, the "load front" r = vt and the
"wave front" r = ct. Obviously this latter front precedes the former in the subsonic case v < c
and vice versa in the supersonic case v > c.

The solutions given above reveal that the membrane response takes different forms in the
regions separated by the load and wave fronts and depends on whether v is less or greater than c.
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In agreement with the findings in [1] we see that the membrane response is identically zero
outside the outer front in either the subsonic or the supersonic case. Also, in either case, the
membrane has a uniform velocity, independent of rand t, inside the inner front. This last
observation was suggested by the numerical result in [1] but was not established analytically
there. It is interesting to note that Kanninen and Florence [1] were able to derive closed-form
solutions for the membrane velocity at the center of the membrane and their results agree with
the constant velocities given here.

We also see that, except for the case v = c, the membrane displacement is continuous across
both fronts and the membrane velocity, while being continuous across the wave front, is
discontinuous across the load front. The explicit solutions given for the region bounded by r = vt
and r = ct show that the membrane displacement increases monotonically from the outer front to
the inner front. Also, the membrane velocity increases from the outer front to the inner front in
the subsonic case while decreases from the outer front to the inner front in the supersonic case.
The maximum membrane velocity at any t always occurs near the load front-immediately
preceding the load front in the subsonic case and immediately trailing the load front in the
supersonic case. We also remark that the discontinuity in the membrane velocity across the load
front is expected from the dynamic equation for the membrane, which is of the second order in t
and has the load term in the form of a delta function along the load front r = vt. An integration
with respect to t across r = vt will result in a finite jump in the membrane velocity across the load
front. We should expect this to hold true for more general elastic structures.

The solution for the membrane displacement w is not continuous across r =vt =ct when
v = c, and is thus not physically meaningful. As v tends to c sharp gradients of w in r are
developed in the region bounded by r = vt and r = ct. Since large awlar corresponds to large
membrane strain we should not expect the linear membrane theory to hold in the limiting case as
v tends to c.

The characteristic velocity Vo which we used in the normalization of the membrane
displacement and velocity has the physical meaning that it is the velocity which would be
attained by the membrane elements if they were all disconnected [1]. Kanninen and Florence [1]

were primarily interested in the simulation problem, i.e. to obtain criteria for justifying the
approximation of the moving load by a uniform simultaneous impulse over the region inside the
load front and concluded that good simulation is achieved in the supersonic case for large values
of {l This is also obvious from (52), which shows as f3 becomes large, the ratio awlat to Vo tends
to unity in r < vt.

Numerical results are now easily obtained and are presented in Figs. 4--6 for f3 = 0.707,1.0 and
4.0. These results are similar to those given in [1].

We remark finally that the solutions obtained here may find useful applications in other
problems involving similar moving sources as many engineering and physical phenomena are
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Fig. 4. Membrane displacement and velocity. f3 = 0.707.
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Fig. 5. Membrane displacement and velocity. p = 1.0.
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Fig. 6. Membrane displacement and velocity. p= 4.0.

governed by the same wave equation. Also the explicit solutions here are useful in nonlinear
membrane problems as they provide the leading terms in perturbation expansions. They are also
useful in checking the accuracy of possible numerical schemes developed for treating more
general moving load problems.
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